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Creep and glass transition behaviour of 
fractionated petroleum pitches: the 
influence of molecular weight and its 
distribution 
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The dependence of viscoelastic properties on the molecular weight of fractionated and 
and blended petroleum pitches was examined in relation to the creep and glass transition 
behaviour. The steady-state viscosity, r/, as a measure of energy dissipation, and the 
steady-state creep compliance, Je ~ as a measure of elastic stored energy, were empirically 
related to the glass transition point, Tg. The values of 7/showed a steep dependence on 
the number average molecular weight,/14 n (r/oc/1~42). It was proved that the molecular 
weight dependence of 77 and Je ~ manifest through the dependence of Tg on Mn (Tg 
1//~n ). Discussion of the blending laws to elucidate the effect of molecular weight 
distribution has revealed that In r/, Je ~ and Tg are expressed additively by using the 
mole fraction of each pitch component with different molecular weights. 

1. Introduction 
Recent developments in the engineering processes 
of carbon industries, especially the extruding 
process of pitch fibre, increasingly demand the 
systematic establishment of isotropic and meso- 
phase pitch rheology. As is well-known, however, 
the heavy-end materials, such as coal-tar and 
petroleum pitches, are mixtures of organic 
condensed-ring compounds with high molecular 
weights and have such complicated chemical 
structures that many of the problems in pitch 
theology and chemistry remain unsolved. The high 
molecular weight and the wider molecular weight 
distribution of pitch molecules could be a crucial 
reason in making the problems complex and 
ambiguous. 

In general, a number of viscoelastic parameters, 
such as viscosity, creep function and relaxation 
modulus, are intimately related to the molecular 
weight and its distribution of constituent mole- 
cules, the relation of which have been intensively 
studied in polymer rheology and science [1, 2]. 
The molecular rheology of polymers has revealed 

the importance of molecular weight and its distri- 
bution in polymer technology. One of the current 
problems in the polymer industry is the control 
and modification of the molecular parameters to 
prepare polymers having excellent qualities. In 
contrast with polymer rheology, the importance 
of molecule, molecular weight, molecular weight 
distribution and intermolecular interaction in 
pitch theology has hardly been acknowledged. 
The establishment of a method for molecular 
weight fractionation and thereby the extensive 
viscoelastic studies of fractionated pitches with 
different molecular weights, would be the first 
step in overcoming this undesirable situation in 
pitch rheology, as conducted in the earlier works 
of polymer rheology and science [1, 2]. 

Pitches are typical glass-forming materials 
and it has been noticed that the crystalline phase 
does not appear even if cooled as slowly as 
possible. Instead of a melting point, such non- 
crystalline materials have a glass transition point, 
Tg, below which the molecular motion of the 
constituents is largely depressed [1, 3]. The tern- 
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perature dependence of viscoelastic properties 
such as relaxation time, viscosity and creep 
compliance, of glass-forming materials is closely 
related to their glass transition points, and no 
precise discussion on the viscoelastic behaviour 
can be developed without a comprehension of 
the glass transition phenomenon of those 
materials. Nevertheless, only little attention has 
been paid to the glass transition point of  pitches 
[4, 5]. 

The torsional creep behaviour of fractionated 
pitches with different molecular weight was 
investigated in the present work along with dilato- 
metric studies of the glass transition point. The 
main objective of the work was to elucidate the 
interrelations of viscoelastic and glass transition 
parameters of fractionated pitches with molecular 
weight. The effects of molecular weight distribu- 
tion on these parameters were also examined. 

2.  E x p e r i m e n t a l  p r o c e d u r e  
2 . 1 .  Samples 
A petroleum pitch with a softening point (ring 
and ball method) of 118.0~ was fractionated 
into six fractions, five benzene-soluble fractions 
(F1 to F5) and an insoluble fraction, by using 
benzene as a good solvent and n-hexane as a poor 
solvent. The elemental analysis of the original 
pitch showed 90.1% C, 5.3% H, 0.0% N and 
4.4% S. The scheme of molecular weight fraction- 
ation is depicted in Fig. 1, where use has been 

TABLE I The number average molecular weight,/~n, 
and blending ratio, f, for fractionated and blended pitches 

E% f* 
F1 380 
F2 450 
F3 590 
F4 750 
F5 910 
BS 510 
B1 425 
B2 460 
B3 510 
B4 545 

7/3 
5/5 
3/7 

1.5/8.5 

*Blending ratio f = (weight of F1/weight of F3). 

made of the fact that a high concentration in 
benzene of benzene/n-hexane mixture is required 
to dissolve the pitch components with high 
molecular weight, and vice versa. The detailed 
procedure for molecular weight fractionation 
was worked out in our previous paper [6]. 

Blended pitches (B1 to B4), made up from F1 
and F3, were also used to elucidate the importance 
of molecular weight distribution on viscoelastic 
properties. The blending ratio and the molecular 
weight for each blended pitch are listed in Table I 
together with the molecular weight of fractionated 
pitches (F1 to F5). The measurement of number 
average molecular weight, Mn, for each sample 
was conducted in benzene solution at 45~ 
using a vapour pressure osometer (Corona 

petroleum pitch 

benzene(50~ 

sol!ble l insoluble 
(BS fraction) 

"] benzene(B)/o-hexane(H) = 2/31 

soluble insoluble 
(FI fraction)l [ 

I , B /H  = 3/2 

soluble insoluble 
(F2 fraction) I B/H = 3/1 

I I 
soluble insoluble 

(F3 fraction) [ B/H = i/0 

I I (room temp.) 
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Figure 1 Flow chart for molecular 
weight fractionation. 



Electric Co. Ltd., Type 117). The precision of 
/~r n values measured was confirmed to be within 
+ 3% using benzil as a standard. 

Of the fractionated pitches, F1 to F3 and B1 
to B4 were used for creep measurement, and F1 
to F4 and B 1 to B4 for the measurement of glass 
transition parameters. Because of high values of 
Tg for F4 and F5, the creep measurement for 
those samples was not conducted in the present 
work. For reference purposes, the measurements 
of creep and glass transition point were also 
carried out for the benzene-soluble fraction (BS- 
fraction denoted in Fig. 1). 

2.2. Measurement  o f  creep d e f o r m a t i o n  
The apparatus used for creep measurement, which 
was similar to those of Plazek et al. [7], Osaki 
et al. [8], Isono et al. [9] and Sakai and Inagaki 
[10], is shown in Fig. 2, and is of a torsional 
type and is capable of obtaining creep compliance 
J(t) under simple shear deformation. Simple shear 
creep compliance is always required to evaluate 
quantitative linear viscoleastic parameters because 
simple shear deformation holds the volume of the 
specimen constant during creep measurement. 

The apparatus comprises the following three 
units. 

1. Torque generating unit: a constant torque, 
kO, was produced by rotating the protractor by an 
angle 0 and twisting a torsion wire (0.5ram 
diameter and 1500 mm long) which had a torsional 
modulus k = 2.87 x 10 -3 Nm. 

2. Torque transmission unit: the constant 
torque is transmitted to the specimen through a 
coupling rod suspended from the torsion wire, 
the coupling rod being centred by a frictionless 
air bearing. In order to prevent loss of heat from 
the specimen, the rod was made of Micalex 
(Tokyo Shibaura Electric Co. Ltd.), which is an 
excellent insulator of heat and a hard solid with a 
tensile strength of 40 to 45 MN m -2 and a thermal 
resistance up to 500 ~ C. 

3. Specimen holder and chamber: the disc- 
shaped specimen was sandwiched between two 
stainless steel plates and fixed on to the specimen 
holder placed in a Pyrex glass chamber which 
was immersed in a water bath thermocontrolled 
to -+ 0.05 ~ C. The specimen disc was glued onto 
the stainless steel plates using ~-cyanoacrylate 
adhesive. 

The disc-shaped specimens for creep measure- 
ment were prepared as follows: after premoulding 

each pitch sample by pouring the molten pitch 
into Teflon moulds with diameters of about 9, 
14 and 20 mm, the samples were placed in stainless 
steel moulds of different diameters, heated in 
an oven to a temperature about 10 ~ C below the 
softening point of the samples, kept for about 
1 h under a pressure of 6kN m -2 , followed by 
a gradual cooling down to the glass transition 
point of the specimens. The sizes of the moulded 
specimens were 10.0, 15.0 and 22.0 mm diameter 
and about 5 mm thick. These specimens were 
kept at temperatures below Tg until creep 
measurement. 

The simple shear creep compliance, J(t),  was 
calculated from the following equation ([1], 
p. 111), 

7rR 4 
J(t) = 2hk----~a(t) (1) 

where a(t) is the angle of torsional deformation of 
the specimen, which was measured using a 1.8 m 
laser beam lever through a mirror attached to 
the coupling rod (see Fig. 2). R and h are the 
radius and thickness of the specimen, respectively. 

2.3. Measurement  o f  glass t rans i t ion 
poin t  

The glass transition point, Tg, for each pitch 
sample was measured dilatometrically. The dilato- 
meters and techniques employed resemble those 
proposed by Bekkedahl [11]. The specimen (4 to 
5g) was degassed (10 -a mmHg) in a Pyrex glass 
dilatometer bulb prior to the addition of pure 
dry mercury which was used as the indicator 
liquid. The dilatometer stem consisted of a 1 rmn 
diameter capillary tube. From the change in 
volume of the contents of the dilatometer, the 
specific volume, O(mlg-1), of the specimen at 
each temperature was calculated by the usual 
procedures [ 11 ]. 

The conventional glass transition point, Tg, 
for each pitch sample was obtained dilatometri- 
cally at a cooling rate of 1 ~ C/3 min. In the plots 
of specific volume ~ against temperature T, 
Tg was obtained as the temperature at the inter- 
section of the extrapolated lines of the super- 
cooled liquid in the high temperature region and 
the glassy state in the low temperature region [ 11 ]. 

3. Results 
3.1. Creep curve 
The creep compliance curves, log J(t)  against log 
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Figure 2 Schematic drawing of the torsional 
creep apparatus. 

t, obtained at different temperature, are shown 
for F2 and B2, as examples, in Fig. 3. The curves 
increase monotonically with time and are straight 
lines with a slope of 1.0 over a long time span 
at the relatively high measurement temperatures, 
which are related to the steady-state flow at 
which all of the retardation mechanisms of the 
pitch samples are considered to have faded out. 
The reduced master curves of creep compliance, 
J(t) against log t/aT, superimposed at a standard 
temperature of To = (273 + 60.0) K are shown 
in Fig. 4 for all pitch samples using the " t ime-  
temperature superposition rule" ([I] ,  Chap. 11), 
where a T is the shift factor for the superposition 
along the time axis in Fig. 4. The shift factor is 
plotted against lIT semilogarithmically in Fig. 5. 
The detailed procedure for the superposition of 
the creep curves of pitch has been described in 
our previous paper [10]. The data in Fig. 5 are 
well represented by a straight line, the equation 
of which is 

3.62 • 104 
In a T - T 109 (2) 
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3.2. Glass t ransi t ion point, Tg 
The specific volume, #, for F3 and B3, as examples, 
is plotted against temperature in Fig. 6, where the 
temperature giving the extrapolated intersection 
of the two straight lines is the glass transition 
point, Tg, of the sample pitch. Table II lists the 
important parameters for the glass transition 
behaviour, Tg, specific volume, #g, at Tg and 
volume-temperature coefficient, (dv/dT) l and 
(dv/dT)g for the supercooled liquid and glassy 
state; these parameters are essential in the 
discussion of the viscoelastic properties and free 
volume near Tg. It is worth noting that Tg shows 
a marked increase with increase in molecular 
weight. 

4. Discussion 
4.1. Separation of viscous and elastic 

characteristics 
Some portion of the external work applied to 
the viscoelastic material during creep deformation 
is stored in the specimen as elastic strain energy, 
and the rest is converted into heat flow as viscous 



- 5  

,-I 

- 8  

- 5  

Ct- 

-Z 

O 

- 8  

I 
~ B2 

- / f  
n 

F2 

I I 

J ' 5  ."l, 

2 
I I 

~," . ~ >  

I 
2 3 4 5 

log[t (see)] 

Figure 3 Creep curves for F2 and B2 
at different measurement temperatures. 
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Figure 4 Master curves of shear creep compliance. The standard temperature for superposition is 60.0 ~ C. 
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The standard temperature for super- 
position is 60.0 ~ C. 

energy dissipation. Therefore, at least two of  the 
characteristic parameters, viscous and elastic, 
should be addressed to characterize the viscoelastic 
material. The steady-flow viscosity, ~7, as a measure 
of  viscous energy dissipation [1] and the steady- 
state creep compliance, f i ,  as a measure of  elastic 
stored energy [1, 22] are suitable characteristics 
which are easily obtainable from the creep curve. 
The values of  r/ and fie are conventionally 
evaluated using the following extrapolations to 
infinite time: 

l / r /  = l i ra  dJ(t)/dt 
t - + o o  

and 

f i  = l i m  [ J ( t )  - -  t /r l ]  
t--~o= 

These conventional extrapolations, however, give 
erroneous results in cases where the retardation 
time of  the specimen is sufficiently long for the 
steady-state flow not to be attained. In order to 
obtain reliable values of  ~? and f i ,  it is always 
desirable to perform the experiments over a 
very long duration to attain steady-state flow. 
Assistance in estimating r/ and ~ in long-term 
creep experiments can be provided by the extra- 
polation method of  Ninomiya: 

TABLE II Some parameters for glass transition 

Tg (K) ~g (mlg -t) (df)/dT) l (d~/dT)g 
(104 mlg -1 deg -l) (104 mlg -1 deg -1) 

F1 290.8 0.8369 4.25 1.90 
F2 312.8 0.8286 4.08 1.95 
F3 337.0 0.8265 3.70 1.60 
F4 357.8 - - - 
BS 325.8 0.7358 3.60 1.50 
B1 299.2 0.8293 4.25 1.70 
B2 311.3 0.8291 4.04 1.72 
B3 316.1 0.8264 3.75 1.60 
B4 326.4 0.8268 3.75 1.45 
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Figure 6 Plots of specific volume, 0, against temperature, T, for F3 and B3 to evaluate the glass transition point, Tg. 

and 

where 

1/r~ = lim J(t)/t = lim mJ(t)/t (3) Nimomiya extrapolation is employed in the 
l/t--*O 1/t~O 

present work. 

,,m 1 llt--,o d(1/t) 
(4) 

d log J(t) 
m - ( 5 )  

d log t 

Further details of the extrapolation method are 
covered by Nimomiya ([12], [1] p. 117). The 

4.2. Temperature dependence of shear 
viscosity 

The viscosity, r/, for each pitch sample is plotted 
semilogarithmically against the inverse tem- 
perature, 1/T, in Fig. 7. Log rl is seen to increase 
linearly with 1/T and this linear relation seems to 
hold even near or at the glass transition point. 
i.e. the temperature dependence of viscosity for 
our pitch samples can be well described in the 
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Figure 7 Temperature dependence of steady-state shear viscosity ~. The arrows denote the glass transition point, Tg, 
for each pitch sample. 

present temperature range by the Andrade 
equation [ 13]: 

n = n0 exP[R T } (6a) 

in which To is a constant, AH n the activation 
energy for shear flow, and R the gas constant. 
The values of AH n for the fractionated and 
blended pitches are "~ 72 + 3 kcal mol-1 (= 3.0 x 
10SJmol-1), being slightly higher than that 
reported previously [10]. Taking account of the 
experimental fact that Equation (6a) would be 
satisfied even at Tg (see Fig. 7), Equation 6a can 
be rewritten as: 

ng R 

where ng is the shear viscosity at Tg. The 
importance of Equation 6b will be shown in 
Fig. 8, if the reduced viscosity n/ng is plotted 
against (1/T-- 1/Tg). All the viscosity data for all 
pitch samples at different measurement tem- 

peratures fall beautifully on a straight line, where 
AHn/R = 3.62 x 104 K, i.e. Equation 6b expresses 
universally the temperature dependence of 
reduced viscosity for pitches with various values 
of Tg, if AHn is insensitive to Tg, as in the present 
case. The universal expression of Equation 6b 
will play a significant role in explaining the mole- 
cular weight dependence of n as seen in the 
following section. 

Many of the properties of liquids, whethe, 
organic or inorganic, and polymeric or not, 
demonstrate the presence of a substantial portion 
of free volume, which may be presented as holes 
or voids associated with packing irregularities [3]. 
Although the free volume is poorly defined, it 
is a useful semi-quantitative concept for the 
understanding of material properties at tem- 
peratures near Tg. The various types of free 
volume theory have been successfully applied to 
the temperature dependence of viscoelastic para. 
meters of glass-forming materials. The Doolittle 
expression [14], Vogel's equation [15] and the 
WLF equation [16], those expressions being 
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equivalent to each other under some assumptions 
[17], claim that Andrade's equation, which does 
not take the free volume effect into account, 
is not suitable for expressing the temperature 
dependence of r/ and a T near Tg, and that A H  n 
depends on temperature. Taking account of the 
temperature dependence of free volume, the WLF 
equation [16] can beautifully explain the tem- 
perature dependence of AH~. In the present 
experimental results, on the other hand, the 
steady-state viscosity seems to be successfully 
described by the Andrade equation even near 
Tg, and AHn = constant (= 72kcalmol-1)in this 
temperature range. It must be noted, however, 
that the value of AH~ for the usual pitches at 
sufficiently high temperatures, for example 
100 to 150 ~ C above Tg, ranges from 30 to 40kcal 
mo1-1 [18-20], suggesting that AH~ is not a 
constant, but has a functional form depending 
on temperature. Therefore, the linearity in Fig. 7 
and the empirical expression of Equation 6b seem 
to be the only fact restricted to a relatively narrow 
temperature range. Further studies would be 
required over a wider temperature range in order 
to elucidate the applicability of the free volume 
theory to pitch rheology. 

Ngure 8 Universal relation between reduced 
viscosity, ~/~g, and temperature (1/T--1/Tg) 
expressed by Equation 6b. 

4.3. Interrelations between molecular 
weight and shear viscosity and glass 
transition point 

The logarithmic plot of log r~ against log A n 
is shown in Fig. 9 for the fractionated and blended 
pitches. The dependence of ~1 on molecular weight, 
&rn, as proposed, is very remarkable; the slope 
of the approximate linear relation is as large as 42, 
in other words, a variation of only 5% in Mn 
induces a 200% change in 7?. This means that 
control of molecular weight is very significant 
in the practical uses of pitches in engineering 
processes. Such a strong dependence of r~ on .~r n, 
however, would tend to decrease with increasing 
temperature, as pointed out by Fox and Flory 
for a low molecular weight polystyrene [21]. 

The glass transition point, Tg, is plotted against 
the inverse of molecular weight, 1/Mn, in Fig. 10. 
Tg is a linear function of 1/M n and is successfully 
expressed by 

B 
rg = Tgoo-- ~ n  n (7) 

where Tea and B are experimental constants 
having values of 423K and 5.1 x 104K, respec- 
tively. Some deviation from Equation 7, however, 
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is observed for blended pitches. The reason for 
this is not clear at present, but the value o f  Tg 
for the blended_pitches is also approximately 
proportional to l/Mn. This inverse proportionality 
is similar to the experimental results reported by 
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Fox and Flory for low molecular weight poly- 
styrene [21]. 

Substituting the empirical relation of Equation 
7 into Equation 6b, the dependence o f  reduced 
viscosity, ~?/~/g, on Mn and T is expressed as 

I I 
1.4 1.6 
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13 

Figure 10 Molecular weight dependence of glass transition point, Tg. The straight line is given by Equation 7. The plots 
for blended pitches are denoted by 9. 
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follows, 

ln_.~ = AHn[1  1 
n, R Tg= - ( B / M n )  (8) 

L 

Using the experimental values of ~?g for each 
sample (about 10 n Pa sec for all samples) and 
introducing the values of  the experimental 
constants, AHn/R = 3.62 x l04 K, leg** = 423K, 
B = 5.1 x i04 K, and T = ( 6 0 . 0  + 273.2)K, the 
calculated relationship between ~? and Mn is drawn 
in Fig. 9 as a solid curve, and is in good accordance 
with the experimental values. This leads to the 
conclusion that the strong dependence of ~? on J~r n 
in Fig. 9 ensues directly from the molecular weight 
dependence of  Tg (Equation 7). 

4.4. Steady state shear creep compliance, 
Je ~ 

The temperature dependence of Je ~ for all our 
pitches is shown in Fig. 11. The empirical relation 
of ~ against T is expressed by the same equation 
as in our previous work [10]: 

= Jg + A (T- -  Tg) (9) 

The temperatures at the intercept on the abscissa 
in Fig. 11 give Tg for the pitches, the values of 
which are in good agreement with the dilatometric 

values (see Table II). Slope A seems to be approxi- 
mately the same for all samples (A ~ 4.0 x 10 -9 
Pa -1 K-l). The monotonic increase in jo  with 
temperature suggests an elastic mechanism of 
pitch materials is enthalpic, not entropic as for 
organic polymers. 

In the same manner as viscosity, Je ~ may be 
related to molecular weight through the molecular 
weight dependence of Tg as follows: 

A ' B  
= const. + A T 4 - 

Mn (10) 

This equation means that jo  decreases with 
increasing molecular weight, i.e. pitch materials 
at a constant temperature become stiffer with 
increase in molecular weight. 

4.5. Blending law 
For the purpose of elucidating the influence of 
molecular weight distribution on theological 
parameters, the blending effect on r~, Tg and 
jo  is discussed here, using blended pitches B1 to 
B4 (see Table I). Prior to the rheological discussion, 
it is noted that the empirical values of Mn for 
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Figure 11 Temperature dependence of steady-state shear creep compliance Ye ~ . The arrows show the glass transition 
point evaluated using the dilatometric method. 
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B1 to B4 measured by VPO (see Table I) are 
in good agreement with those calculated by the 
following number-average expression, 

/~nb = -~nlf l  -}'~fn3.f3 

/ ( W x  + w 3  1 (11) 
= I  Mn3] 

where fx and f3 are the mole fractions of F1 and 
F3 pitches, and ~r~, ~rl and 4.3 are the num- 
ber average molecular weights of blended, F1 and 
F3 pitches, respectively, wl and wa are the weight 
fractions of F1 and F3 pitches. 

Since the effect of molecular weight on 
viscosity is through the molecular weight depen- 
dence of Tg, as stated in the previous section, it 
would be readily anticipated that the blending law 
of molecular weight will be governed by that for 
Tg. Experimental values of Tg for F1, B1 to B4, 
and F3 are plotted against the mole fraction f3 
and the weight fraction w3 of F3 pitch in Fig. 
12. The experimental values of Tg are well 
expressed additively using f3 but not wa, i.e. we 
can make an important conclusion in general 
terms that the glass transition point, Tg, for a 
pitch comprising molecules with molecular weight 
M s of mole fraction f (Mi)  is expressed by 

N 
Tg = 2 f(Mi)Tg(Mi) (12a) 

i=1 

or by an integral form as 

r~ - -  ~- 
rg = JoI(M)rg(M dM <rg>. (12b) 

Substituting the results of the molecular 
weight blending law for Tg (Equation 12b) into 
Equation 6b, the reduced viscosity, ~/r~g, can be 
described as 

 .ql 1 ) 
lnr/r/g = R ~-T <Tg)n (13) 

Equation 13 is probably approximated with a 
good accuracy by* 

ln---~ = R I T ' - -  (14) r~g 

Equation 14 suggests, by taking account the 
unsusceptibility of A H  n and r/g on molecular 
weight and molecular weight distribution, that 
the molecular weight dependence of in 7/ might 
be given by a number-average expression, i.e. the 
shear viscosity, r/, for a pitch having a molecular 
weight distribution f(M) can generally be 
expressed by 

In ~7 = in rI(M)f(M) dM (16) 

A plot of In r/ against f3 for the blended pitches 
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Figure 12 Interrelations of glass 
transition point, Tg, for F1, 
B1 to ]34, and Fe3, with mole 
fraction, f3, and weight frac- 
tion, wa, of F3 pitch. 

* (T--~n I I /<Tg> n - -  Tg~ 
<rg>~ - ~ g - ~ \  rg /n (lS) 

Even for a sufficiently large deviation in Tg from its average, say ,  i<Tg) n - -  Tgi - -  Tg, the difference b e t w e e n  <l/Tg) n 
and 1/(Tg) n is of the order of 1/<Tg) n - 3 • 10-3 for Tg -- 300 K. 
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is shown in Fig. 13, in ~ varying on a straight 
line, which supports the validity of  the blending 
law in Equation 16. 

5. Conclusions 
Based on the measurement of  torsional creep 
and glass transit ion point  for fractionated 
petroleum pitches with different molecular 
weights, the following conclusions are drawn. 

1. The reduced viscosity, ~7/%, is expressed 
universally by  the following equation within the 
temperature range of  our experiments:  

In 3 -  = F z - - -  
~g 

2. The glass transition point ,  Tg, is empirically 
described as 

B 
: rg= #n 

The molecular weight dependence of  7/ and Je ~ 
manifest themselves through the dependence o f  
rg  on/~f n. 

3. The steady state creep compliance, do ,  
increases with temperature,  the empirical equation 
for which is 

j o  = Jg + A ( T - -  Tg) 

4. From the discussion on blending law, In r~, 
Tg and j o  are well expressed additively using the 
mole fraction o f  each pitch component  with 
different molecular weight. 
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